Evaluation of antigen-specific T-cell immunity at the single cell level using large panels of DNA barcoded MHC multimers

Kivin Jacobsen¹, PhD; Dagmar Walter²; Michael Stubbington²; Katherine Pfeiffer²; Charlotte Halgreen¹, Stephane Boutet², Liselotte Brix¹ ¹Immudex, Copenhagen, Denmark, ²10x Genomics, CA, US

1) Introduction:

Identification of disease-specific T-cell epitopes is key to the development of many novel vaccines and immunotherapies. Profiling disease-specific T cells, emerging during a cellular immune response e.g. in tumor development or destruction, is an important aspect of personalized immunotherapy.

We have developed dCODE[™] Dextramer[®] technology, for detection of antigen specific T-cells through DNA barcode using next generation sequencing. In combination with 10x Genomics feature Barcode protocol the technology allows coupling of TCR-specificity and –sequence of antigen-specific T cells (ASTC), in combination with transcriptional analysis.

Here we show data from sample analysis with a panel of 50 MHC dCODE[™]Dextramer[®] specificities, including 6 negative controls, spanning 8 alleles.

2) dCODE[™]Dextramer[®]panel design and staining CD8-enriched HPBMC from a healthy donor (HLA-Alleles: A*0201, A*1101, B*3501) were stained with a panel of 50 dCODE Dextramer reagents according to established protocol. The panel consisted of 44 dCODE[™]Dextramer[®], comprising different viral and cancer epitopes, and 4 negative control dCODE[™]Dextramer[®] reagents (Table 1). Cells were phenotyped using 11 TotalSeq™C antibodies (BioLegend); CD3, CD19, CD45Ra, CD4, CD8a, CD14, CD45Ro, CD279(PD-1), CD127(IL7Ra), CD197(CCR7), HLA-DR.

The stained sample was FACSorted for CD8+ MHC dCODE[™]Dextramer[®]+ cells and loaded onto a 10x Chromium controller. Using the Chromium single cell V(D)J Reagent kit with feature barcoding technology, 3 libraries were generated: Feature barcode (dCODE and TotalSeq), VDJ and RNA expression libraries. Next generation Sequencing (NGS) of each library were performed using Illumina sequencing platform.

Table 1: dCOD	E™Dextr	amer [®] panel						
Cat.no	Alelle	Peptide	Antigen	Cat.no	Alelle	Peptide	Antigen	
WA2131-PfBC	A*0101	VTEHDTLLY	CMV/Viral	WB2177-PfBC	A*0201	RMFPNAPYL	WT-1/cancer	
WB2660-PfBC	A*0201	KTWGQYWQV	gp100/Cancer	WB2191-PfBC	A*0201	YLNDHLEPWI	BCL-X/Cancer	
WB2162-PfBC	A*0201	ELAGIGILTV	MART-1/Cancer	WB2652-PfBC	A*0201	MLDLQPETT	HPV/Viral	
WB3697-PfBC	A*0201	CLLWSFQTSA	Tyrosinase/Cancer	WC2197-PfBC	A*0301	KLGGALQAK	IE-1/CMV	
WB2158-PfBC	A*0201	IMDQVPFSV	gp100/Cancer	WC2656-PfBC	A*0301	RLRAEAQVK	EBV /Viral	
WB3247-PfBC	A*0201	SLLMWITQV	NY-ESO-1/Cancer	WC2632-PfBC	A*0301	RIAAWMATY	BCL-2L1/Cancer/	
WB3497-PfBC	A*0201	KVAELVHFL	MAGE A3/Cancer	WD2175-PfBC	A*1101	IVTDFSVIK	EBV /Viral	
WB3474-PfBC	A*0201	KVLEYVIKV	MAGE-A1/Cancer	WD2149-PfBC	A*1101	AVFDRKSDAK	EBV /Viral	
WB5066-PfBC	A*0201	CLLGTYTQDV	Kana. B dioxyg.	WK2138-PfBC	B*3501	IPSINVHHY	CMV/Viral	
WB2143-PfBC	A*0201	LLDFVRFMGV	EBV /Viral	WF2196-PfBC	A*2402	AYAQKIFKI	CMV/Viral	
WB3307-PfBC	A*0201	LLMGTLGIVC	HPV /Viral	WF2133-PfBC	A*2402	QYDPVAALF	CMV/Viral	
WB2144-PfBC	A*0201	CLGGLLTMV	EBV /Viral	WH2165-PfBC	B*0702	QPRAPIRPI	EBV /Viral	
WB3531-PfBC	A*0201	YLLEMLWRL	EBV /Viral	WH2136-PfBC	B*0702	TPRVTGGGAM	CMV/Viral	
WB3529-PfBC	A*0201	FLYALALLL	EBV /Viral	WH2166-PfBC	B*0702	RPPIFIRRL	EBV /Viral	
WB2161-PfBC	A*0201	GILGFVFTL	Flu /Viral	WH2135-PfBC	B*0702	RPHERNGFTVL	CMV /Viral	
WB2130-PfBC	A*0201	GLCTLVAML	EBV /Viral	WI2148-PfBC	B*0801	RAKFKQLL	EBV /Viral	
WB2132-PfBC	A*0201	NLVPMVATV	CMV /Viral	WI2137-PfBC	B*0801	ELRRKMMYM	CMV/Viral	
WB2139-PfBC	A*0201	ILKEPVHGV	HIV /Viral	WI2147-PfBC	B*0801	FLRGRAYGL	EBV /Viral	
WB5335-PfBC	A*0201	FLASKIGRLV	P-lipase	Negative controls				
WF2639-PfBC	A*2402	CYTWNQMNL	WT1/Cancer					
WB2646-PfBC	A*0201	RTLNAWVKV	HIV /Viral	WA3580-PfBC	A*0101	SLEGGGLGY	NC	
WB2157-PfBC	A*0201	KLQCVDLHV	PSA/Cancer	WA3579-PfBC	A*0101	STEGGGLAY	NC	
WB2141-PfBC		LLFGYPVYV	HTLV-1/Viral	WB2666-PfBC	A*0201	ALIAPVHAV	NC	
WB3338-PfBC		SLFNTVATL	HIV /Viral	WF3231-PfBC	A*2402	AYSSAGASI	NC	
WB3339-PfBC	A*0201	SLYNTVATLY	HIV /Viral	WH3397-PfBC	B*0702	GPAESAAGL	NC	
WB3340-PfBC	A*0201	SLFNTVATLY	HIV /Viral	NI3233-PfBC	NR	AAKGRGAAL	NC	

(Fig 1, left A-F,) Staining observed for the 6 negative control dCODE Dextramer reagents. (Fig 1, T=1 to T=4), shows the effect of increasing the threshold on the negative control. The **Threshold = log₂(reads+1) = 4** was used to analyze each of the 44 dCODE Dextramer specificities, in the assay. Same approach was used for the Antibody staining, using iso type control antibodies.

3) NGS Data analysis:

Analysis of the sequencing data were performed using Cell Ranger, by dimensional reduction, clustering, and t-SNE calculation. Loupe Cell Browser, and Loupe V(D)J Browser were used for visual analysis (10x Genomics software package)

Analysis method:

- The following stringent rules were set up for the targeted analysis: > The "background" threshold was defined using the negative controls
- > The dCODE positive ASTC populations were defined as having a signal over the said threshold "signals" defined by the negative control reagents
- > Only MHC matching the alleles of the donor were considered positive
- > ASTC's must be CD8+
- > ASTC's binding more than one dCODE Dextramer was excluded

Fig. 1: Setting dCODE Dextramer threshold

5) Clonal distribution of ASTC's

Table 2:	Cat.no.	WB2161	WD2175	WD2149	WB2162
Specificity (pMHC)		FLU	EBV1	EBV2	MART 1
Number of positive cells		2594	4472	1846	187
Number of specific clones	732	389	166	180	
No. cell in highest freq. clo	110	2373	1241	8*	
Frequency of highest clone		4%	53%	67%	4%
Clones of > 1 cell		251	44	19	1
Clones of 1 cell		481	345	147	179
Frequency of Clones with 1 cell		66%	89%	89%	99%
Frequency of Clones > 1 c	ell	34%	11%	11%	1%*

4) Antigen-specific T-cell populations detected Each of the 44 MHC dCODE reagent data were analyzed for identification of positive cells using a threshold=4 and visualized by t-SNE plot

 \geq 4 distinct dCODE Dextramer positive ASTC populations were found (Fig 2). Each population was bisected, indicating different phenotypes within each ASTC populations (see why in 6)

The distribution of unique TCR clones were evaluated for each of the 4 positive antigens.

- distribution.

P186

The influenza epitope (Flu), detected a high number of different TCR clones. This may reflect that influenza is a reoccurring infection where some TCR clones falls away in between the infective periods, and new clones are generated at next infection, resulting in a high diversity of expanded clones.

The two EBV epitopes is quite alike and detected fewer and larger TCR clones. This may reflect, that EBV is a persistent infection, where TCR clones are selected over time, decreasing the clonal distribution, and increasing the number of same clones.

> The MART1 epitope detected low number of TCR clones with a high

Only one clonal TCR with more than 1 cell was observed, the rest was single different clonotypes. This may reflect, that MART 1 is an endogenous cancer antigen, which is unexpanded in healthy donors..

The found ASTC populations were further phenotyped using TotalSeq[™]C antibody data. Two markers, HLADR, and CCR7 (Fig 3), was shown to stain one of each of the bisected ASTC clusters.

HLADR and CCR7, both have increased labeling on the same half of each of the dCODE positive populations, indicating that the bisecting of the ASTC populations in the t-SNE plots was driven by these two activations makers, HLADR and CCR7 (Fig 3).

Conclusion

High plex staining using MHC dCODE[™] Dextramer[®], in combination with TotalSeqC[™] antibodies (Biolegend), in the 10x Chromium 5' feature barcoding workflow gives a powerful tool for deep phenotyping of immune relevant cells.

- specificities.
- cell clusters

6) Phenotyping the bisected ASTC populations:

 \checkmark We identified four different antigen specific T cell populations, in a CD8 sorted HPBMC samples, using a dCODE Dextramer panel of 44

✓ Paired clonal TCR sequence and TCR specificity (MHC dCODE) Dextramer positive) were directly obtained, and quantified, by overlaying the VDJ expression of each cell with the dCODE Positive

✓ The antigen specific T cell populations were further phenotyped using TotalSeq[™] antibody data, identifying HLADR and CCR7 subpopulations within each of the ASTC clusters

 \checkmark This targeted analysis method revealed immunological answers, however, is restrained by the t-SNE cluster analysis. Cells that does not cluster well in t-SNE space, such as cells of low frequency, or dCODE positive cells with very diverse TCR's, might be overseen.

 \checkmark In waste dataset the information is merely unlimited. To get relevant biological information filtered out, both unbiased bioinformatics and "targeted" analysis (drilling though deep phenotyping) will be important.