MHC DEXTRAMER[®] MELANOMA PANEL

The MHC Dextramer[®] Melanoma Panel consists of MHC Dextramer[®] reagents specific for 6 different melanoma-associated antigens MART-1, NY-ESO-1, MAGE-A3, Tyrosinase, gp100 and MAGE-A1. These Dextramer[®] reagents can be used for detection, enumeration and isolation of melanomaspecific CD8⁺ T cells from blood or tumor tissue.¹⁻⁸

IMPROVED SEPARATION OF POSITIVES FROM NEGATIVES

The MHC Dextramer[®] Melanoma Panel comprises 6 different Dextramer®-specificities. Each Dextramer®-specificity is provided both as a PE- and APC conjugate. This allows for so-called 2Dstaining, i.e. the use of two Dextramer[®] reagents with the same specificity but different fluorochromes in the same staining reaction. 2D-staining makes it easier to distinguish Dextramer®positive cells from Dextramer®-negative cells. The use of dualcolor staining has been demonstrated to reduce the frequency of false positives 10-fold.9

MHC DEXTRAMER®

2D-STAINING

Dextramer® (A*0201/ NLVPMVATV), labeled with either PE or APC. 2D-staining clearly improves the ability to distinguish CMV-specific T cells from the negative T cells.

An example 2D-staining is exemplified here for a CMV

CONTENT

14 Dextramer® reagents are provided, including 2 negative controls:	Antigen	# Tests
Dextramer®		
HLA-A*0201 / ELAGIGILTV/PE	MART-1	25 tests
HLA-A*0201 / ELAGIGILTV/APC	MART-1	25 tests
HLA-A*0201 / SLLMWITQV/PE	NY-ESO-1	25 tests
HLA-A*0201 / SLLMWITQV/APC	NY-ESO-1	25 tests
HLA-A*0201 / KVAELVHFL/PE	MAGE-A3	25 tests
HLA-A*0201 / KVAELVHFL/APC	MAGE-A3	25 tests
HLA-A*0201 / YMDGTMSQV/PE	Tyrosinase	25 tests
HLA-A*0201 / YMDGTMSQV/APC	Tyrosinase	25 tests
HLA-A*0201 / IMDQVPFSV/PE	gp100	25 tests
HLA-A*0201 / IMDQVPFSV/APC	gp100	25 tests
HLA-A*0201 / KVLEYVIKV/PE	MAGE-A1	25 tests
HLA-A*0201 / KVLEYVIKV/APC	MAGE-A1	25 tests
HLA-A*0201 / Negative Control/PE	Nonsense	25 tests
HLA-A*0201 / Negative Control/APC	Nonsense	25 tests

RELATED PRODUCTS

Each Dextramer® reagent in the MHC Dextramer® Melanoma Panel is also available as a single reagent. Immudex offers additional melanoma Dextramer® reagents not included in this panel.

The MHC Dextramer[®] Melanoma Panel is for research use only.

POPULAR CANCER DEXTRAMER®

Allele	Peptide	Antigen	Type of cancer
A*0201	ELAGIGILTV	MART-1	Melanoma
A*0201	SLLMWITQC	NY-ESO-1 157-165	Melanoma
H-2Db	Abu Abu L Abu LTVFL	Moloney murine sarcoma virus (MoMSV)	Moloney murine sarcoma virus (MoMSV)
A*0201	RMFPNAPYL	WT-1	Lung, prostate, breast, ovarian cancer
A*0201	VLQELNVTV	Proteinase 3 peptide Pr1 169-177	Cancer
A*0101	EVDPIGHLY	MAGE-A3	Melanoma
H-2Kb	SVYDFFVWL	L-dopachrome tautomerase precursor	Cancer
A*0201	YMDGTMSQV	Tyrosinase	Melanoma
A*2402	SYGVLLWEI	TEK or EGFR	Cancer
A*0201	IMDQVPFSV	gp100	Melanoma
A*0201	LMLGEFLKL	Survivin1 M2 96-104	Cancer
A*0201	KIFGSLAFL	HER2/neu 369-377	Breast cancer
A*2402	RFVPDGNRI	VEGFR2 169-177	Pancreatic cancer
H-2Kd	TYLPTNASL	Her2/neu 63-71	Breast cancer
A*0201	KVAELVHFL	MAGE-A3	Melanoma
A*0201	YMLDLQPETT	HPV-16 E7 11-20	HPV-16
A*0201	CMTWNQMNL	WT1 235-243	Cancer
A*0201	RLQGISPKI	SSX2	Cancer
H-2Db	ASFRNLTHL	Tpbg 258-266	Cancer
H-2Ld	LPYLGWLVF	P815 Mastocytoma 35-43	Cancer

REFERENCES

- 1. Uzana, R., et al., Trogocytosis Is a Gateway to Characterize Functional Diversity in Melanoma-Specific CD8+ T Cell Clones. Journal of Immunology, 2012. 188[2]: p. 632-40.
- Hong, D.S., et al., BRAF[V600] inhibitor GSK2118436 targeted inhibition of mutant BRAF in cancer patients does not impair overall immune competency. Clinical cancer research: an official journal of the American Association for Cancer Research, 2012. 18[8]: p. 2326-35.
- 3. Goodyear, O.C., et al., Azacitidine augments expansion of regulatory T cells after allogeneic stem cell transplantation in patients with acute myeloid leukemia (AML). Blood, 2012. 119(14): p. 3361-9.
- 4. Sorensen, R.B., et al., The immunodominant HLA-A2-restricted MART-1 epitope is not presented on the surface of many melanoma cell lines. Cancer immunology, immunotherapy: CII, 2009. 58(5): p. 665-75.
- 5. Kollgaard, T., et al., Longitudinal immune monitoring of patients receiving intratumoral injection of a MART-1 T-cell receptor-transduced cell line (C-Cure 709). Cytotherapy, 2009. 11(5): p. 631-41.
- 6. Machlenkin, A., et al., Capture of tumor cell membranes by trogocytosis facilitates detection and isolation of tumor-specific functional CTLs. Cancer research, 2008. 68(6): p. 2006-13.
- 7. Straten, P., et al., Identification of identical TCRs in primary melanoma lesions and tumor free corresponding sentinel lymph nodes. Cancer immunology, immunotherapy: CII, 2006. 55(5): p. 495-502.
- 8. Hadrup, S., et al., Tumor infiltrating lymphocytes in seminoma lesions comprise clonally expanded cytotoxic T cells. 2006. Int. J. Cancer: 119, 831–838.
- 9. Hadrup, S., et al, Parallel detection of antigen-specific T-cell responses by multidimentional encoding of MHC multimers. 2009. Nature Methods, 6(7): p.520-28.