Immudex

## T-CELL ELISPOT PROFICIENCY TESTING 2023 (Group 1)

October 2023

Version 3 of the report





## TABLE OF CONTENTS

|    | INTRODUCTION TO PROFICIENCY PANELS |    |
|----|------------------------------------|----|
|    | ANALYSES                           |    |
|    | RESULTS                            |    |
|    | PROFICIENCY PERFORMANCE            |    |
| 5. | DISCUSSION                         | 14 |
|    | ACKNOWLEDGEMENTS                   |    |
|    | ABOUT IMMUDEX                      |    |
| 8. | APPENDICES                         | 17 |



## 1. INTRODUCTION TO PROFICIENCY PANELS

Originally developed at the initiative of CIC (the US Cancer Immuno-therapy Consortium of the CRI) and CIMT (the European Association for Cancer Immunotherapy), Immudex has since 2013 offered Proficiency Testing as a service to help researchers and clinicians worldwide evaluate and benchmark their immune monitoring performance with MHC Multimers and T-cell ELISpot assays. The proficiency Testing is open to any laboratory, independent of geographic location or field of interest. Read more about Proficiency Testing <u>here</u>.

Immudex Proficiency Testing is conducted yearly, and the next will take place in 2024.

#### 1.1. T-CELL ELISPOT PROFICIENCY TESTING 2023

In the T-cell ELISpot Proficiency Testing 2023, participants tested their proficiency in detecting the number of IFN- $\gamma$  secreting antigen-specific cells in two different PBMC samples in response to exposure to defined commercial peptide pools using ELISpot assay.

Each participant received two pre-tested PBMC samples (see appendix 8) and tested them according to the instructions but with their own protocol for direct human IFN- $\gamma$  ELISpot Assay. The participants included their own choice of antibodies, plates, enzyme, substrate, equipment, medium, etc. The PBMC samples and reagents were pre-tested at Immudex to check the viability of the cells. The viability of the tested PBMC samples was in the range of 64-75% after thawing and after one hour of rest.

This report shows the participants' test results and overall performances without revealing their names and affiliation.

In this Proficiency Test:

- 35 laboratories from 13 countries participated.
- 28 participants were from Academia, and 7 participants were from industry.

The participants were divided into two groups. They received the following PBMC samples for analysis.

Group 1: Lot 2010113384 & Lot 2010113367

Group 2: Lot 2010113384 & Lot 2010113745



## 2. ANALYSES

Each participant:

- Was assigned a confidential Laboratory Identification Number (Lab ID).
- Received instructions on how to perform the T-cell ELISpot proficiency test (Appendix 1).
- Received two pre-tested vials of PBMC samples (Lot 2010113367 and 2010113384)
- Received three vials of peptide pools:
  - Reagent 1 (JPT's PepMixTM HCMVA (pp65) >90%; <u>PM-PP65-2.</u>) Pool of 138 peptides derived from a peptide scan (15mers with 11 aa overlap) through 65 kDa phosphoprotein (pp65) (Swiss-Prot ID: P06725) of Human Cytomegalovirus (HCMV) strain AD169
  - Reagent 2 (JPT's CEFX Ultra SuperStim Pool >90%; <u>PM CEFX-2</u>). Positive Control Pool of 176 known peptide epitopes for a broad range of HLA sub-types and different infectious agents: Clostridium tetani, Coxsackievirus B4, Haemophilus influenza, Helicobacter pylori, Human adenovirus 5, Human herpesvirus 1, Human herpesvirus 2, Human herpesvirus 3, Human herpesvirus 4, Human herpesvirus 5, Human herpesvirus 6, Human papillomavirus, Influenza A, JC polyomavirus, Measles virus, Rubella virus, Toxoplasma gondii, Vaccinia virus
  - Reagent 3 (Negative control: PBS/DMSO)
- Stimulated the two PBMC samples with Reagent 1, 2 and 3.
- Was encouraged to analyze samples with their own standard ELISpot protocol to reflect routine sample analysis conducted in their laboratory.
- Was recommended to look at the "Assay Harmonization Guidelines" (Appendix 2).
- Reported their results back to Immudex after their analysis (Appendix 4 and Appendix 5).

The reported participant data was analyzed by Immudex. Raw data and calculated values from the data analysis are found in Appendix 2-3

## 3. **RESULTS**

In this year's T-cell ELISpot Proficiency Testing, 35 participants reported their data.

The reported results are summarized in Figures 1-2 and 3-4 on the following pages. All measurements were done in triplicates. Data obtained with Reagents 1 or 2 were corrected for background (Reagent 3, negative control) for each PBMC sample.



#### 3.1. RESULTS FROM ANALYSIS OF PBMC 2010113367



Figure 1A. Results from analysis of sample PBMC 2010113367 with Reagent 1 (CMV) and Reagent 3 (Negative control) (Analysis 1). Triplicate test values for CMV-specific spots (orange diamonds) and background spots (blue dots) per 200.000 PBMCs/well are shown.



**Figure 1B. Background corrected results from analysis of sample PBMC 2010113367 with Reagent 1 (CMV) and Reagent 3 (Negative control) (Analysis 1).** The mean of CMV-specific spots subtracted the mean of background spots is shown (orange diamonds). Negative background-corrected results were set to 0. The median of all results is 64 spots/well and indicated by the blue line.

IMMUDEX.COM





Figure 2A. Results from analysis of sample PBMC 2010113367 with Reagent 2 (CEFX) and Reagent 3 (Negative control) (Analysis 2). Triplicate test values for CEFX-specific spots (orange diamonds) and background spots (blue dots) per 200.000 PBMCs/well are shown.



Figure 2B. Background corrected results from analysis of sample PBMC 2010113367 with Reagent 2 (CEFX) and Reagent 3 (Negative Control) (Analysis 2). The mean of CEFX-specific spots subtracted the mean of background spots is shown (orange diamonds). The median of all background-corrected test results is 5 spots/well and indicated by the blue line.

IMMUDEX.COM



#### 3.1.1. Evaluation of Test Results for PBMC 2010113367

#### 3.1.1.1.

The relative accuracy is our way of comparing the performance of one participant with that of all participants as a group. In the case of PBMC 2010113367 stimulated with the CMV pool the distribution of data is such that we have chosen to define the relative accuracy as the background-corrected test result for each participant divided by the median value of the background-corrected test results for all participants. Relative accuracy scores for all laboratories are listed in Appendix 4 and an example of how the relative accuracy is calculated is shown in Appendix 5. The relative accuracy of measurements for PBMC 2010113367 stimulated with CMV are illustrated in figures 3. Lab performances are divided into three groups and assigned a proficiency score according to how close their results are to the median of all participating laboratories – see table 1 and appendix 4 (analysis 1).

| Relative<br>Accuracy                                                                                             | Corresponds to            | Presented in the figure below as | Proficiency score |
|------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------|-------------------|
| 0.66≤RA≤1.50                                                                                                     | Within the median range   | Blue columns                     | 3                 |
| 0.50≤RA<0.66<br>1.50 <ra≤2.00< th=""><th>Near the median range</th><th>Striped columns</th><th>2</th></ra≤2.00<> | Near the median range     | Striped columns                  | 2                 |
| RA<0.50<br>RA>2.00                                                                                               | Far from the median range | Grey columns                     | 1                 |

Table 1. Definition of proficiency score.



Figure 3. Relative accuracy for analysis of PBMC 2010113367 with Reagent 1 (CMV). See appendix 4 (Analysis 1).



For the results obtained with the CEFX pool, characterized by low spot numbers close to zero and significant outliers, we found that a slightly different analysis better represented the performance. In this case the evaluation is based on median absolute deviation (MAD) see figure 4 & 5 and table 2 (below) and appendix 4 (analysis 2) to find calculations.



Figure 4. Relative accuracy for analysis of PBMC 2010113367 with Reagent 2 (CEFX). The orange diamonds show the mean of CMV-specific spots subtracted the mean of background spots. The blue line shows the median of all results (5 spots). The grey lines are median  $\pm$  1MAD, and the green lines are median  $\pm$  2MAD.

 Table 2. Definition of proficiency score.

| Test Result                           | Corresponds to             | Presented in the figure below as | Proficiency<br>Score |
|---------------------------------------|----------------------------|----------------------------------|----------------------|
| [Deviation from median]<1MAD          | Within the<br>median range | Blue columns                     | 3                    |
| 1MAD≤[Deviation from median]≤<br>2MAD | Near the<br>median range   | Striped columns                  | 2                    |
| [Deviation from median]>2MAD          | Far from the median range  | Grey columns                     | 1                    |





Figure 5. Lab proficiency score of analysis of PBMC 2010113367 with Reagent 2 (CEFX) (Analysis 2). See appendix 4 (Analysis 2).



#### 3.2. RESULTS FROM ANALYSIS OF PBMC 2010113384



Figure 6A. Results from analysis of sample PBMC 2010113384 with Reagent 1 (CMV) and Reagent 3 (Negative control) (Analysis 3). Triplicate test values for CMV-specific spots (orange diamonds) and background spots (blue dots) per 200.000 PBMCs/well are shown.



Figure 6B. Background corrected results from analysis of sample PBMC 2010113384 with Reagent 1 (CMV) and Reagent 3 (Negative control) (Analysis 3). The mean of CMV-specific spots subtracted the mean of background spots is shown (orange diamonds). The median of all results is 225 spots and indicated by the blue line.





Figure 7A. Results from analysis of sample PBMC 2010113384 with Reagent 2 (CEFX) and Reagent 3 (Negative control) (Analysis 4). Triplicate test values for CEFX-specific spots (orange diamonds) and background spots (blue dots) per 200.000 PBMCs/well are shown.



Figure 7B. Background corrected results from analysis of sample PBMC 2010113384 with Reagent 2 (CEFX) and Reagent 3 (Negative Control) (Analysis 4). The mean of CEFX-specific spots subtracted the mean of background spots is shown (orange diamonds). The median of all results is 185 spots and indicated by the blue line.



#### 3.2.1. Evaluation of Test Results for PBMC 2010113384

For the data generated with PBMC 2010113384 we have chosen to define the relative accuracy as the background-corrected test result for each participant divided by the median value of the background-corrected test results for all participants. Relative accuracy scores for all laboratories are listed in Appendix 4 and an example of how the relative accuracy is calculated is shown in Appendix 5. The relative accuracy of measurements for PBMC 2010113384 stimulated with CMV and CFEX are illustrated in figures 8 and 9 respectively. Lab performances are divided into three groups and assigned a proficiency score according to how close their results are to the average of all participating laboratories – see table 1 and appendix 4 (analysis 3 & 4).



Figure 8. Relative accuracy for analysis of PBMC 2010113384 with Reagent 1 (CMV). See appendix 4 (analysis 3).





**Figure 9. Relative accuracy for analysis of PBMC 2010113384 with Reagent 2 (CEFX).** See appendix 4 (analysis 4).



## 4. PROFICIENCY PERFORMANCE

The ability of each participant to identify IFN- $\gamma$  secreting T-cells was described with an overall proficiency score. For each of the four analyses, the laboratories were assigned a proficiency score between 1-3, see figures 3, 5, 8, 9, table 1,2 and appendix 4. The overall proficiency score was then defined by the average score obtained in the four analyses. Thus, a participant with an overall proficiency score of "3" is in the average range on all four measurements and has the highest possible score. A participant with an average score of "1" is far from average on all four measurements and has the lowest possible score. See calculation of Overall Proficiency Score in Appendix 6



**Figure 10. Overall proficiency score for all the participating laboratories**. The average overall proficiency score is 2.3 indicated by the red line.

## 5. **DISCUSSION**

Immudex T-cell ELISpot Proficiency Testing provide an opportunity for laboratories worldwide to assess their proficiency in identifying IFN- $\gamma$  secreting T-cells with the ELISpot assay. Evaluation of laboratory performance is essential to ensure alignment between laboratories. Harmonized laboratory performance is of high importance in multicenter trials, where clinical results from different sites are compared to evaluate treatment responses.

In this T-cell ELISpot Proficiency Testing, participants used their own laboratory-specific procedure to determine the number of IFN- $\gamma$  secreting cells after stimulation with two different defined peptide pools (CMV and CEFX). In this report, each participant can see how well their obtained results align with the rest of the participants. This critical knowledge provides each participant with the opportunity to evaluate their assay protocol, to ensure and sustain their ability to identify IFN- $\gamma$  secreting T-cells accurately, reproducibly, and in alignment with other researchers across sites, or to identify necessary protocol optimizations. To facilitate inter-lab comparisons, we have performed simple statistical data analysis and calculated an overall proficiency score according to criteria chosen by Immudex. However, this is not an exact science and is only meant as a help to get an overview of the results. Different choices of analysis would be equally valid and might have given a slightly different outcome. Visual inspection of the distribution of background corrected results (fig 1b, 2b, 6b and 7b) is also good simple way of assessing overall lab performance.

The variation of spot counts in the triplicate analysis for each lab was low, showing a low intralab variation, however, the variation between labs was in general quite high even for assays with intermediate and high numbers of spots with a CV between 52% - 111%. This is probably a reflection of the nature of the ELISpot assay that may be sensitive to small variations in protocols, lab equipment and operator experience. That said the participants in this proficiency test are in general very experienced with 83% reporting that they have conducted >15 ELISpot assays within the last 2 years. In addition, we are unable to identify any trend in the information about the protocol and equipment used that distinguishes the level of lab proficiency, including resting time after thawing. We also investigated whether shipping and the condition of cell samples might have affected lab performance, but we find no trend in viability data either – viability was in general high.

In conclusion, this proficiency test shows that the participating labs have a consistent and reproducible ELISpot assay, however the variation between laboratories is significant and we found no trends in the reported protocols suggesting a general root cause. However, the protocols of the participants do differ on multiple parameters. Establishment of detailed standardized protocols including cell culture conditions and all used equipment is probably crucial to achieve high inter-lab reproducibility of ELISpot assays.

## 6. ACKNOWLEDGEMENTS

We thank JPT Peptide Technologies (Germany) for providing peptide pools, Mabtech for participating and CureVac for critical review of the report and helpful suggestions that helped shape the content of this report.



## 7. ABOUT IMMUDEX

Based in Virum, Denmark, with North American operations based in Fairfax, Virginia, Immudex manufactures MHC Dextramer<sup>®</sup> and other Dextramer<sup>®</sup>-based products for the detection of immune cells.

Immudex' MHC Dextramer<sup>®</sup> products are utilized for the quantification or sorting of antigenspecific T cells in life science research, in-vitro diagnostics, as well as the development of immunotherapeutics and vaccines. The primary focus is research-use-only products for the immune monitoring of immunotherapy development. But we also offer MHC I Dextramer® produced according to current good manufacturing practices (cGMP) Immudex is ISO 13485:2016 certified, registered with the FDA and audited regularly, which guarantees that MHC I Dextramer® (GMP) are produced in compliance with strict international cGMP standards for medical devices regarding quality control and product traceability. We have developed a kit for monitoring of CMV cellular immunity in transplant and other immune-deficient patients. In Europe, the CE-marked Dextramer<sup>®</sup> CMV Kit is approved for in vitro diagnostic use to quantify CMV-specific T cells. USA FDA 510(k) clearance for the CMV kit was granted in March 2017.

Our state-of-the-art dCODE Dextramer<sup>®</sup> reagents enable massive multiplexing of antigenspecific T-cell detection. Detection of over 1000 CD8+ T-cell specificities from a single blood sample has been achieved.



**Figure 10 Schematic drawing of MHC Dextramer® and conventional MHC multimers binding to T-cell receptors (TCRs) on the surface of a T cell.** MHC Dextramer<sup>®</sup> reagents are fluorescently-labeled MHC multimers that can bind simultaneously to multiple TCRs on a single T cell with exceptional avidity. This enables sensitive detection and isolation of antigen-specific T cell populations with a broad range of TCR affinities..



#### 7.1. RESOURCES FROM IMMUDEX

We are committed to building a global community of proficiency in immune monitoring. Reach to us if you have questions or want to know more about the Immudex Proficiency Testing.

#### **Proficiency Testing**

Access the Immudex Proficiency Testing site, where you will find information about MHC Multimer and ELISpot Proficiency Panels.

Read more

#### **Contact the Proficiency Testing Coordinator**

We are here to support you through all the process. From the proficiency testing to answering questions regarding deadlines, PBMC samples, data analysis. We want to ensure the process is easy for you.

proficiencypanel@immudex.com

#### **Performance Reports**

Curious about previous year's results? Find out more for MHC Multimer and ELISpot Proficiency Panels.

MHC Multimer Proficiency Testing reports

ELISpot Proficiency Testing Reports

#### **Technical Support**

Let us know if you experience difficulties or have questions. Immudex will help you get the most out of your Dextramer<sup>®</sup> products.

customer@immudex.com



## 8. APPENDIXES

**8.1.** APPENDIX 1: INSTRUCTIONS

Instructions for T-cell ELISpot Proficiency Testing 2023

#### Introduction

Originally developed at the initiative of CIC (the US Cancer Immuno-therapy Consortium of the CRI) and CIMT (the European Association for Cancer Immunotherapy), Immudex offers a Proficiency Testing Service to help researchers and clinicians worldwide evaluate and benchmark their immune monitoring performance with T-cell ELISpot assays and MHC multimer reagents and flow cytometry.

In this T-cell ELISpot Proficiency Testing, participants evaluate their ability to accurately detect the number of IFN- $\gamma$  secreting antigen-specific cells in two different PBMC samples. The participants must determine the spot count per well as a result of stimulation with three different reagents: JPT's PepMixTM HCMVA (pp65), CEFX Ultra SuperStim Pool, and a negative control reagent.

Each participant is asked to test the PBMC samples according to these instructions, but following their own protocol for direct human IFN- $\gamma$  ELISpot Assays, including own choice of antibodies, plates, enzyme, substrate, equipment, medium, and other miscellaneous chemicals and tools to perform the assay. We encourage participants to analyze samples with their own protocol to reflect routine sample analysis. We also recommend participants to have a look at the "Assay harmonization guidelines" provided by the CIC of CRI and CIMT, see Appendix I.

After analysis, participants report their results to Immudex. Results and performance from all participants are presented in a final report where participants names and affiliations are kept anonymous.

#### **Deadlines and Immudex contact**

Data submission:

Final report from Immudex:

If you have questions, please contact the proficiency testing coordinator, at <a href="mailto:proficiencypanel@immudex.com">proficiencypanel@immudex.com</a>

May 04, 2023

June, 2023



#### Samples and Reagents provided

- Two PBMC samples (Lot #2010113367 and Lot #2010113384)
- Reagent-1 (PepMixTM HCMVA (pp65); JPT Product Code: <u>PM-PP65-2</u>)
- Reagent-2 (CEFX Ultra SuperStim Pool; JPT Product Code: <u>PM-CEFX-2</u>)
- Reagent-3 (Negative control PBS/DMSO).

Instructions for how to unload the samples and return the shipper are included in the shipper. We recommend storing the samples at  $\leq$  -140°C until running the ELISpot assay.

Please, remember to return the unloaded shipper within 24 hours after receiving it, instruction is included in the shipper.

NOTE: Failing to return the shipper, we will have to charge you \$800, for the shipper.

#### **Experimental setup**

ELISpot Step-by-Step

- A. Antibody coating
- B. Cell incubation
- C. Cytokine capture
- D. Detection antibodies
- E. Streptavidin-enzyme conjugate
- F. Addition of substrate
- G. Analysis

Please use your own currently established protocol for the IFN- $\gamma$  ELISpot assay, but follow the general instructions listed here.

#### **General instructions**

- 1. One 96-well plate is required for the assay. Coat columns 3-5 of the plate according to your own IFN- $\gamma$  ELISpot protocol. Coat 3x8 = 24 wells in total, see plate setup in Table 2 next page.
- 2. Thaw the two PBMC vials and count the cells using your laboratory's preferred procedure.



For each PBMC vial, record total cell number and the percentage of viable cells. If a resting step is included, please count and record total cell number and the percentage of viable cells after the resting step, see Table 1 below.

Table 1 PBMC status

|            | Right aft            | er thawing     | After resting<br>(if you include a resting step) |                |  |
|------------|----------------------|----------------|--------------------------------------------------|----------------|--|
| PBMC lot   | Total cell<br>number | % Viable cells | Total cell<br>number                             | % Viable cells |  |
| 2010113367 |                      |                |                                                  |                |  |
| 2010113384 |                      |                |                                                  |                |  |

- Dilute Reagents: Reagent-1, Reagent-2, and Reagent-3 contain approximately 100µl and must be diluted 1:10 with the medium used for the assay.
- 4. Plate PBMC samples and add Reagents exactly as outlined in Table 2 (data are reported in this format).
  - Row B3-5, C3-5, D3-5, E3-5, F3-5, G3-5:
     Plate 200,000 viable cells/well in 50 μL medium/well. Add Reagents at 50 μL/well.
     Final volume of cells and Reagent should be 100 μL.
  - Row A3-5 and H3-5: Add 100 µL medium/well (no cells or Reagent), to enable assessment of false positive spots.

1-2 3 4 5 6-12 А No cells - Medium No cells - Medium No cells - Medium PBMC lot 2010113367 PBMC lot 2010113367 PBMC lot 2010113367 В Reagent-1 Reagent-1 Reagent-1 PBMC lot 2010113367 PBMC lot 2010113367 PBMC lot 2010113367 С Reagent-2 Reagent-2 Reagent-2 PBMC lot 2010113367 PBMC lot 2010113367 PBMC lot 2010113367 D Reagent-3 Reagent-3 Reagent-3 PBMC lot 2010113384 PBMC lot 2010113384 PBMC lot 2010113384 Е Reagent-1 Reagent-1 Reagent-1 PBMC lot 2010113384 PBMC lot 2010113384 PBMC lot 2010113384 F Reagent-2 Reagent-2 Reagent-2 PBMC lot 2010113384 PBMC lot 2010113384 PBMC lot 2010113384 G Reagent-3 Reagent-3 Reagent-3 н No cells - Medium No cells - Medium No cells - Medium

5. Perform the assay, following your own established protocol. Table 2 Plate overview

#### **Report data**

After completing the experiment, please report data and experimental details, using this link <a href="https://immudex.wufoo.com/forms/r1c26iy81h6ty8b/">https://immudex.wufoo.com/forms/r1c26iy81h6ty8b/</a>



#### Appendix I

#### Assay harmonization guidelines

Initial ELISpot Harmonization Guidelines to Optimize Assay Performance (based on previously published recommendations from the CIC/CRI and CIMT ELISpot panel programs).

## A. Use only pretested and optimized serum or serum-free media, allowing for low background: high signal ratio.

#### **B. Establish laboratory SOP for ELISPOT testing procedures, including:**

B1. Counting method for apoptotic cells for determining adequate cell dilution for plating.B2. Duration of resting period (i.e. overnight) of cells before plating and incubation.

#### C. Test each condition at least in triplicates.

## **D.** Add optimal cell number per well for sufficient antigen presentation and highest signal to noise ratio.

#### E. Establish SOP for plate reading, including:

- E1. Human auditing during reading process.
- E2. Adequate adjustments for technical artefacts. \*

#### F. Let only trained personnel (per laboratory SOP) conduct assays.

\*For details see Nature Protocols 2015 (Guidelines for the automated evaluation of Elispot assays by Janetzki, Sylvia et. al.; 2015. Nat Protoc. 2015).



#### 8.2. APPENDIX 2: RESULTS FROM ANALYSIS OF PBMC 2010113367

This table shows the triplicate values that the participants reported for analysis with the three reagents. The values represent the number of spots read for each sample.

| PBMC 2010113367 |        | Reagent 1 |          | Mean  |                  | Reagent 3 |      | Mean  | Background corrected data |
|-----------------|--------|-----------|----------|-------|------------------|-----------|------|-------|---------------------------|
| Reagent         | PepMix | TM HCMV   | A (pp65) | B3-B5 | Negative control |           | trol | D3-D5 | Mean (B3-B5)-Mean(D3-D5)  |
| Lab ID / Wells  | B3     | B4        | B5       |       | D3               | D4        | D5   |       |                           |
| 1402            | 125    | 148       | 141      | 138   | 12               | 11        | 13   | 12    | 126                       |
| 1404            | 9      | 15        | 16       | 13    | 0                | 2         | 0    | 1     | 13                        |
| 1405a           | na     | na        | na       | na    | 0                | 0         | 0    | 0     | na                        |
| 1406            | 48     | 82        | 55       | 62    | 0                | 0         | 1    | 0     | 61                        |
| 1407            | 243    | 206       | 242      | 230   | 1                | 1         | 1    | 1     | 229                       |
| 1408            | 63     | 68        | 56       | 62    | 0                | 0         | 0    | 0     | 62                        |
| 1411            | 42     | 44        | 49       | 45    | 2                | 1         | 1    | 1     | 44                        |
| 1414            | 60     | 51        | 62       | 58    | 0                | 0         | 0    | 0     | 58                        |
| 1415            | 38     | 41        | 39       | 39    | 2                | 0         | 1    | 1     | 38                        |
| 1416            | 67     | 61        | 55       | 61    | 1                | 5         | 4    | 3     | 58                        |
| 1422            | 59     | 75        | 63       | 66    | 0                | 0         | 0    | 0     | 66                        |
| 1423            | 277    | 261       | 264      | 267   | 0                | 0         | 0    | 0     | 267                       |
| 1424            | 371    | 299       | 336      | 335   | 3                | 2         | 2    | 2     | 333                       |
| 1426            | na     | na        | na       | na    | na               | na        | na   | na    | na                        |
| 1429            | 106    | 122       | 115      | 114   | 0                | 0         | 0    | 0     | 114                       |
| 1433            | 261    | 265       | 234      | 253   | 3                | 1         | 3    | 2     | 251                       |
| 1435            | 6      | 10        | 4        | 7     | 0                | 0         | 1    | 0     | 6                         |

| PBMC 2010113367 |        | Reagent 2   |          | Mean  |                  | Reagent 3 |                       | Mean | Background corrected data |
|-----------------|--------|-------------|----------|-------|------------------|-----------|-----------------------|------|---------------------------|
| Reagent         | CEFX U | tra SuperSi | tim Pool | C3-C5 | Negative control |           | Negative control D3-D |      | Mean (C3-C5)-Mean(D3-D5)  |
| Lab ID / Wells  | C3     | C4          | C5       |       | D3               | D4        | D5                    |      |                           |
| 1402            | 23     | 22          | 24       | 23    | 12               | 11        | 13                    | 12   | 11                        |
| 1404            | 2      | 1           | 1        | 1     | 0                | 2         | 0                     | 1    | 1                         |
| 1405a           | 1      | 1           | 1        | 1     | 0                | 0         | 0                     | 0    | 1                         |
| 1406            | 6      | 16          | 12       | 11    | 0                | 0         | 1                     | 0    | 11                        |
| 1407            | 22     | 25          | 26       | 24    | 1                | 1         | 1                     | 1    | 24                        |
| 1408            | 5      | 5           | 2        | 4     | 0                | 0         | 0                     | 0    | 4                         |
| 1411            | 3      | 5           | 2        | 3     | 2                | 1         | 1                     | 1    | 2                         |
| 1414            | 6      | 7           | 2        | 5     | 0                | 0         | 0                     | 0    | 5                         |
| 1415            | 2      | 4           | 3        | 3     | 2                | 0         | 1                     | 1    | 2                         |
| 1416            | 11     | 5           | 9        | 8     | 1                | 5         | 4                     | 3    | 5                         |
| 1422            | 6      | 9           | 4        | 6     | 0                | 0         | 0                     | 0    | 6                         |
| 1423            | 20     | 22          | 23       | 22    | 0                | 0         | 0                     | 0    | 22                        |
| 1424            | 25     | 44          | 37       | 35    | 3                | 2         | 2                     | 2    | 33                        |
| 1426            | 19     | 22          | 16       | 19    | 13               | 6         | 5                     | 8    | 11                        |
| 1429            | 5      | 6           | 4        | 5     | 0                | 0         | 0                     | 0    | 5                         |
| 1433            | 45     | 53          | 44       | 47    | 3                | 1         | 3                     | 2    | 45                        |
| 1435            | 2      | 2           | 0        | 1     | 0                | 0         | 1                     | 0    | 1                         |



### 8.3. APPENDIX 3: RESULTS FROM ANALYSIS OF PBMC 2010113384

| PBMC 2010113384 |        | Reagent 1 |          | Mean  |    | Reagent 3   |      | Mean  | Background corrected data |
|-----------------|--------|-----------|----------|-------|----|-------------|------|-------|---------------------------|
|                 | PepMix | тм нсми   | A (pp65) | E3-E5 | Ne | gative cont | trol | G3-G5 | Mean (E3-E5)-Mean(G3-G5)  |
| Lab ID / Wells  | E3     | E4        | E5       |       | G3 | G4          | G5   |       |                           |
| 1402            | 246    | 238       | 230      | 238   | 22 | 22          | 25   | 23    | 215                       |
| 1404            | 244    | 231       | 229      | 235   | 8  | 12          | 17   | 12    | 222                       |
| 1405a           | 337    | 287       | 335      | 320   | 0  | 0           | 1    | 0     | 319                       |
| 1405b           | 294    | 310       | 282      | 295   | 2  | 0           | 1    | 1     | 294                       |
| 1406            | 186    | 191       | 188      | 188   | 0  | 0           | 0    | 0     | 188                       |
| 1407            | 434    | 430       | 469      | 444   | 3  | 1           | 1    | 2     | 443                       |
| 1408            | 191    | 189       | 180      | 187   | 0  | 0           | 0    | 0     | 187                       |
| 1409            | 139    | 151       | 191      | 160   | 26 | 15          | 11   | 17    | 143                       |
| 1410            | 455    | 466       | 438      | 453   | 8  | 20          | 1    | 10    | 443                       |
| 1411            | 324    | 304       | 310      | 313   | 3  | 3           | 3    | 3     | 310                       |
| 1412            | 292    | 294       | 266      | 284   | 7  | 3           | 3    | 4     | 280                       |
| 1413            | 65     | 75        | 65       | 68    | 0  | 0           | 0    | 0     | 68                        |
| 1414            | 302    | 326       | 337      | 322   | 1  | 5           | 3    | 3     | 319                       |
| 1415            | 220    | 270       | 218      | 236   | 0  | 0           | 2    | 1     | 235                       |
| 1416            | 129    | 148       | 137      | 138   | 0  | 0           | 0    | 0     | 138                       |
| 1417            | 794    | 679       | 728      | 734   | 27 | 25          | 27   | 26    | 707                       |
| 1418            | 131    | 143       | 141      | 138   | 2  | 5           | 1    | 3     | 136                       |
| 1419            | 397    | 383       | 377      | 386   | 3  | 0           | 1    | 1     | 384                       |
| 1420            | 75     | 96        | 109      | 93    | 0  | 0           | 0    | 0     | 93                        |
| 1421            | na     | na        | na       | na    | na | na          | na   | na    | na                        |
| 1422            | 186    | 176       | 180      | 181   | 0  | 0           | 0    | 0     | 181                       |
| 1423            | na     | 287       | 211      | 249   | 20 | 22          | 23   | 22    | 227                       |
| 1424            | 418    | 413       | 307      | 379   | 2  | 3           | 2    | 2     | 377                       |
| 1425            | 256    | 258       | 257      | 257   | 2  | 0           | 0    | 1     | 256                       |
| 1426            | na     | na        | na       | na    | na | na          | na   | na    | na                        |
| 1427            | 78     | 100       | 83       | 87    | 1  | 1           | 1    | 1     | 86                        |
| 1428            | 313    | 308       | 347      | 323   | 13 | 9           | 13   | 12    | 311                       |
| 1429            | 160    | 150       | 125      | 145   | 0  | 0           | 0    | 0     | 145                       |
| 1430            | 167    | 184       | 173      | 175   | 0  | 0           | 0    | 0     | 175                       |
| 1431            | 154    | 148       | 123      | 142   | 2  | 2           | 0    | 1     | 140                       |
| 1432            | 362    | 340       | 366      | 356   | 11 | 9           | 9    | 10    | 346                       |
| 1433            | 179    | 179       | 163      | 174   | 3  | 1           | 0    | 1     | 172                       |
| 1434            | 452    | 424       | 447      | 441   | 5  | 0           | 2    | 2     | 439                       |
| 1435            | 165    | 195       | 219      | 193   | 3  | 1           | 5    | 3     | 190                       |

| PBMC 2010113384 |     | Reagent 2   |     | Mean  |    | Reagent 3  |    | Mean  | Background corrected data |
|-----------------|-----|-------------|-----|-------|----|------------|----|-------|---------------------------|
|                 |     | a SuperStir |     | F3-F5 |    | gative con |    | G3-G5 | Mean (F3-F5)-Mean(G3-G5   |
| Lab ID / Wells  | F3  | F4          | F5  |       | G3 | G4         | G5 |       |                           |
| 1402            | 207 | 226         | 201 | 211   | 22 | 22         | 25 | 23    | 188                       |
| 1404            | 171 | 158         | 171 | 167   | 8  | 12         | 17 | 12    | 154                       |
| 1405a           | 166 | 171         | 210 | 182   | 0  | 0          | 1  | 0     | 182                       |
| 1405b           | 212 | 196         | 200 | 203   | 2  | 0          | 1  | 1     | 202                       |
| 1406            | 149 | 147         | 136 | 144   | 0  | 0          | 0  | 0     | 144                       |
| 1407            | 388 | 342         | 392 | 374   | 3  | 1          | 1  | 2     | 372                       |
| 1408            | 138 | 139         | 131 | 136   | 0  | 0          | 0  | 0     | 136                       |
| 1409            | 54  | 86          | 75  | 72    | 26 | 15         | 11 | 17    | 54                        |
| 1410            | 386 | 420         | 380 | 395   | 8  | 20         | 1  | 10    | 386                       |
| 1411            | 317 | 315         | 314 | 315   | 3  | 3          | 3  | 3     | 312                       |
| 1412            | 292 | 293         | 273 | 286   | 7  | 3          | 3  | 4     | 282                       |
| 1413            | 30  | 40          | 25  | 32    | 0  | 0          | 0  | 0     | 32                        |
| 1414            | 234 | 243         | 253 | 243   | 1  | 5          | 3  | 3     | 240                       |
| 1415            | 294 | 270         | 241 | 268   | 0  | 0          | 2  | 1     | 268                       |
| 1416            | 100 | 98          | 116 | 105   | 0  | 0          | 0  | 0     | 105                       |
| 1417            | 698 | 633         | 743 | 691   | 27 | 25         | 27 | 26    | 665                       |
| 1418            | 115 | 109         | 126 | 117   | 2  | 5          | 1  | 3     | 114                       |
| 1419            | 229 | 207         | 222 | 219   | 3  | 0          | 1  | 1     | 218                       |
| 1420            | 26  | 37          | 58  | 40    | 0  | 0          | 0  | 0     | 40                        |
| 1421            | 388 | 366         | 372 | 375   | 43 | 37         | na | 40    | 335                       |
| 1422            | 139 | 161         | 109 | 136   | 0  | 0          | 0  | 0     | 136                       |
| 1423            | 193 | 184         | 198 | 192   | 0  | 0          | 1  | 0     | 191                       |
| 1424            | 354 | 300         | 286 | 313   | 2  | 3          | 2  | 2     | 311                       |
| 1425            | 240 | 216         | 203 | 220   | 2  | 0          | 0  | 1     | 219                       |
| 1426            | 126 | 93          | 137 | 119   | 4  | 2          | 8  | 5     | 114                       |
| 1427            | 61  | 68          | 36  | 55    | 1  | 1          | 1  | 1     | 54                        |
| 1428            | 249 | 280         | 313 | 281   | 13 | 9          | 13 | 12    | 269                       |
| 1429            | 61  | 70          | 84  | 72    | 0  | 0          | 0  | 0     | 72                        |
| 1430            | 159 | 164         | 164 | 162   | 0  | 0          | 0  | 0     | 162                       |
| 1431            | 92  | 104         | 116 | 104   | 2  | 2          | 0  | 1     | 103                       |
| 1432            | 301 | 300         | 299 | 300   | 11 | 9          | 9  | 10    | 290                       |
| 1433            | 175 | 178         | 130 | 161   | 3  | 1          | 0  | 1     | 160                       |
| 1434            | 402 | 410         | 404 | 405   | 5  | 0          | 2  | 2     | 403                       |
| 1435            | 163 | 166         | 176 | 168   | 3  | 1          | 5  | 3     | 165                       |

PRECISION IMMUNE MONITORING



# 8.4. Appendix 4: Calculations of Proficiency Scores Analysis 1

| PBMC 2010113367 |                           | PepMixTM HCMVA (p | p65)                                                                                                          |                   |                   |
|-----------------|---------------------------|-------------------|---------------------------------------------------------------------------------------------------------------|-------------------|-------------------|
| Lab ID          | Background corrected data | 0.66≤RA≤1.50      | 0.50≤RA<0.66 & 1.50 <ra≤2.00< td=""><td>RA&lt;0.50 &amp; RA&gt;2.00</td><td>Proficiency score</td></ra≤2.00<> | RA<0.50 & RA>2.00 | Proficiency score |
| 1402            | 126                       |                   | 1,97                                                                                                          |                   | 2                 |
| 1404            | 13                        |                   |                                                                                                               | 0,20              | 1                 |
| 1405a           | na                        | na                | na                                                                                                            | na                | na                |
| 1406            | 61                        | 0,96              |                                                                                                               |                   | 3                 |
| 1407            | 229                       |                   |                                                                                                               | 3,58              | 1                 |
| 1408            | 62                        | 0,97              |                                                                                                               |                   | 3                 |
| 1411            | 44                        | 0,68              |                                                                                                               |                   | 3                 |
| 1414            | 58                        | 0,90              |                                                                                                               |                   | 3                 |
| 1415            | 38                        |                   | 0,60                                                                                                          |                   | 2                 |
| 1416            | 58                        | 0,90              |                                                                                                               |                   | 3                 |
| 1422            | 66                        | 1,03              |                                                                                                               |                   | 3                 |
| 1423            | 267                       |                   |                                                                                                               | 4,18              | 1                 |
| 1424            | 333                       |                   |                                                                                                               | 5,20              | 1                 |
| 1426            | na                        | na                | na                                                                                                            | na                | na                |
| 1429            | 114                       |                   | 1,79                                                                                                          |                   | 2                 |
| 1433            | 251                       |                   |                                                                                                               | 3,92              | 1                 |
| 1435            | 6                         |                   |                                                                                                               | 0,10              | 1                 |

### Analysis 2

| PBMC 2010113367 |                           | CEFX UIt                       | ra SuperStim Pool              |                                |                                |                   |
|-----------------|---------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|-------------------|
| Lab ID          | Background corrected data | Absolute deviation from median | Proficiency score |
|                 |                           | [Data - Median]                | X<1MAD( = 4)                   | 1MAD (=4)≤x≤2MAD (=8)          | X>2MAD (=8)                    |                   |
| 1402            | 11                        | 6                              |                                | 6                              |                                | 2                 |
| 1404            | 1                         | 4                              |                                | 4                              |                                | 2                 |
| 1405a           | 1                         | 4                              |                                | 4                              |                                | 2                 |
| 1406            | 11                        | 6                              |                                | 6                              |                                | 2                 |
| 1407            | 24                        | 19                             |                                |                                | 19                             | 1                 |
| 1408            | 4                         | 1                              | 1                              |                                |                                | 3                 |
| 1411            | 2                         | 3                              | 3                              |                                |                                | 3                 |
| 1414            | 5                         | 0                              | 0                              |                                |                                | 3                 |
| 1415            | 2                         | 3                              | 3                              |                                |                                | 3                 |
| 1416            | 5                         | 0                              | 0                              |                                |                                | 3                 |
| 1422            | 6                         | 1                              | 1                              |                                |                                | 3                 |
| 1423            | 22                        | 17                             |                                |                                | 17                             | 1                 |
| 1424            | 33                        | 28                             |                                |                                | 28                             | 1                 |
| 1426            | 11                        | 6                              |                                | 6                              |                                | 2                 |
| 1429            | 5                         | 0                              | 0                              |                                |                                | 3                 |
| 1433            | 45                        | 40                             |                                |                                | 40                             | 1                 |
| 1435            | 1                         | 4                              |                                | 4                              |                                | 2                 |
|                 | Median = 5                | MAD* = 4                       |                                |                                |                                |                   |
|                 |                           | *Median of Absolute Deviation  |                                |                                |                                |                   |



## Analysis 3

| PBMC 2010113384       |                               | РерМ         | ixTM HCMVA (pp65)                                                                                             |                   |                   |
|-----------------------|-------------------------------|--------------|---------------------------------------------------------------------------------------------------------------|-------------------|-------------------|
| Lab ID                | Background corrected data     | 0.66≤RA≤1.50 | 0.50≤RA<0.66 & 1.50 <ra≤2.00< th=""><th>RA&lt;0.50 &amp; RA&gt;2.00</th><th>Proficiency score</th></ra≤2.00<> | RA<0.50 & RA>2.00 | Proficiency score |
| 1402                  | 215                           | 0,96         |                                                                                                               |                   | 3                 |
| 1404                  | 222                           | 0,99         |                                                                                                               |                   | 3                 |
| 1405a                 | 319                           | 1,42         |                                                                                                               |                   | 3                 |
| 1405b                 | 294                           | 1,31         |                                                                                                               |                   | 3                 |
| 1406                  | 188                           | 0,84         |                                                                                                               |                   | 3                 |
| 1407                  | 443                           |              | 1,97                                                                                                          |                   | 2                 |
| 1408                  | 187                           | 0,83         |                                                                                                               |                   | 3                 |
| 1409                  | 143                           |              | 0,64                                                                                                          |                   | 2                 |
| 1410                  | 443                           |              | 1,97                                                                                                          |                   | 2                 |
| 1411                  | 310                           | 1,38         |                                                                                                               |                   | 3                 |
| 1412                  | 280                           | 1,24         |                                                                                                               |                   | 3                 |
| 1413                  | 68                            |              |                                                                                                               | 0,30              | 1                 |
| 1414                  | 319                           | 1,42         |                                                                                                               |                   | 3                 |
| 1415                  | 235                           | 1,05         |                                                                                                               |                   | 3                 |
| 1416                  | 138                           |              | 0,61                                                                                                          |                   | 2                 |
| 1417                  | 707                           |              |                                                                                                               | 3,15              | 1                 |
| 1418                  | 136                           |              | 0,6                                                                                                           |                   | 2                 |
| 1419                  | 384                           |              | 1,71                                                                                                          |                   | 2                 |
| 1420                  | 93                            |              |                                                                                                               | 0,42              | 1                 |
| 1421                  | na                            | na           | na                                                                                                            | na                | na                |
| 1422                  | 181                           | 0,8          |                                                                                                               |                   | 3                 |
| 1423                  | 227                           | 1,01         |                                                                                                               |                   | 3                 |
| 1424                  | 377                           |              | 1,68                                                                                                          |                   | 2                 |
| 1425                  | 256                           | 1,14         |                                                                                                               |                   | 3                 |
| 1426                  | na                            | na           | na                                                                                                            | na                | na                |
| 1427                  | 86                            |              |                                                                                                               | 0,38              | 1                 |
| 1428                  | 311                           | 1,38         |                                                                                                               |                   | 3                 |
| 1429                  | 145                           |              | 0,64                                                                                                          |                   | 2                 |
| 1430                  | 175                           | 0,78         |                                                                                                               |                   | 3                 |
| 1431                  | 140                           |              | 0,62                                                                                                          |                   | 2                 |
| 1432                  | 346                           |              | 1,54                                                                                                          |                   | 2                 |
| 1433                  | 172                           | 0,77         |                                                                                                               |                   | 3                 |
| 1434                  | 439                           |              | 1,95                                                                                                          |                   | 2                 |
| 1435                  | 190                           | 0,85         |                                                                                                               |                   | 3                 |
| RA (Relative accuracy | ): Background corrected data/ | median       |                                                                                                               |                   |                   |
| Median = 225          |                               |              |                                                                                                               |                   |                   |



## **Analysis 4**

| PBMC 2010113384     |                               | CEFX         | Ultra SuperStim Pool                                                                                          |                   |                   |
|---------------------|-------------------------------|--------------|---------------------------------------------------------------------------------------------------------------|-------------------|-------------------|
| Lab ID              | Background corrected data     | 0.66≤RA≤1.50 | 0.50≤RA<0.66 & 1.50 <ra≤2.00< th=""><th>RA&lt;0.50 &amp; RA&gt;2.00</th><th>Proficiency score</th></ra≤2.00<> | RA<0.50 & RA>2.00 | Proficiency score |
| 1402                | 188                           | 1,02         |                                                                                                               |                   | 3                 |
| 1404                | 154                           | 0,83         |                                                                                                               |                   | 3                 |
| 1405a               | 182                           | 0,98         |                                                                                                               |                   | 3                 |
| 1405b               | 202                           | 1,09         |                                                                                                               |                   | 3                 |
| 1406                | 144                           | 0,78         |                                                                                                               |                   | 3                 |
| 1407                | 372                           |              |                                                                                                               | 2,01              | 1                 |
| 1408                | 136                           | 0,73         |                                                                                                               |                   | 3                 |
| 1409                | 54                            |              |                                                                                                               | 0,29              | 1                 |
| 1410                | 386                           |              |                                                                                                               | 2,08              | 1                 |
| 1411                | 312                           |              | 1,69                                                                                                          |                   | 2                 |
| 1412                | 282                           |              | 1,52                                                                                                          |                   | 2                 |
| 1413                | 32                            |              |                                                                                                               | 0,17              | 1                 |
| 1414                | 240                           | 1,30         |                                                                                                               |                   | 3                 |
| 1415                | 268                           | 1,45         |                                                                                                               |                   | 3                 |
| 1416                | 105                           |              | 0,57                                                                                                          |                   | 2                 |
| 1417                | 665                           |              |                                                                                                               | 3,59              | 1                 |
| 1418                | 114                           |              | 0,62                                                                                                          |                   | 2                 |
| 1419                | 218                           | 1,18         |                                                                                                               |                   | 3                 |
| 1420                | 40                            |              |                                                                                                               | 0,22              | 1                 |
| 1421                | 335                           |              | 1,81                                                                                                          |                   | 2                 |
| 1422                | 136                           | 0,74         |                                                                                                               |                   | 3                 |
| 1423                | 191                           | 1,03         |                                                                                                               |                   | 3                 |
| 1424                | 311                           |              | 1,68                                                                                                          |                   | 2                 |
| 1425                | 219                           | 1,18         |                                                                                                               |                   | 3                 |
| 1426                | 114                           |              | 0,62                                                                                                          |                   | 2                 |
| 1427                | 54                            |              |                                                                                                               | 0,29              | 1                 |
| 1428                | 269                           | 1,45         |                                                                                                               |                   | 3                 |
| 1429                | 72                            |              |                                                                                                               | 0,39              | 1                 |
| 1430                | 162                           | 0,88         |                                                                                                               |                   | 3                 |
| 1431                | 103                           |              | 0,55                                                                                                          |                   | 2                 |
| 1432                | 290                           |              | 1,57                                                                                                          |                   | 2                 |
| 1433                | 160                           | 0,86         |                                                                                                               |                   | 3                 |
| 1434                | 403                           |              |                                                                                                               | 2,18              | 1                 |
| 1435                | 165                           | 0,89         |                                                                                                               |                   | 3                 |
| RA (Relative accura | acy): Background corrected da | ta/median    |                                                                                                               |                   |                   |
| Median = 185        |                               |              |                                                                                                               |                   |                   |



#### 8.5 APPENDIX 5: CALCULATION OF THE RELATIVE ACCURACY

Example of relative accuracy calculation of results obtained with PBMC 2010113367 stimulated with CMV peptide pool.

|        | PBMC 2010113367 |    |    |      |                  |    |    |      |                           |                            |               |        |
|--------|-----------------|----|----|------|------------------|----|----|------|---------------------------|----------------------------|---------------|--------|
|        |                 | CN | ٨v |      | Negative control |    |    |      |                           |                            |               |        |
| Lab ID | B1              | B2 | B3 | Mean | D1               | D2 | D3 | Mean | Background corrected mean | Median of all participants | Relative acc  | curacy |
| 1416   | 67              | 61 | 55 | 61   | 1                | 5  | 4  | 3,3  | 57,7                      | 64,0                       | (57,7/64,0) = | = 0,90 |

| 8.6 AF     |            | Proficie |            | OFICIENCY SCORE |        |  |
|------------|------------|----------|------------|-----------------|--------|--|
| Lab ID no. | Analysis 1 |          | Analysis 3 | Analysis 4      | (Mean) |  |
| 1402       | 2          | 2        | 3          | 3               | 2,5    |  |
| 1404       | 1          | 2        | 3          | 3               | 2,3    |  |
| 1405a      | na         | 2        | 3          | 3               | 2,7    |  |
| 1405b      | 3          | 1        | 3          | 3               | 2,5    |  |
| 1406       | 3          | 2        | 3          | 3               | 2,8    |  |
| 1407       | 1          | 1        | 2          | 1               | 1,3    |  |
| 1408       | 3          | 3        | 3          | 3               | 3,0    |  |
| 1409       | 1          | 2        | 2          | 1               | 1,5    |  |
| 1410       | 3          | 3        | 2          | 1               | 2,3    |  |
| 1411       | 3          | 3        | 3          | 2               | 2,8    |  |
| 1412       | 3          | 3        | 3          | 2               | 2,8    |  |
| 1413       | 3          | 1        | 1          | 1               | 1,5    |  |
| 1414       | 3          | 3        | 3          | 3               | 3,0    |  |
| 1415       | 2          | 3        | 3          | 3               | 2,8    |  |
| 1416       | 3          | 3        | 2          | 2               | 2,5    |  |
| 1417       | 1          | 1        | 1          | 1               | 1,0    |  |
| 1418       | 3          | 3        | 2          | 2               | 2,5    |  |
| 1419       | 3          | 2        | 2          | 3               | 2,5    |  |
| 1420       | 3          | 1        | 1          | 1               | 1,5    |  |
| 1421       | na         | 2        | na         | 2               | 2,0    |  |
| 1422       | 3          | 3        | 3          | 3               | 3,0    |  |
| 1423       | 1          | 1        | 3          | 3               | 2,0    |  |
| 1424       | 1          | 1        | 2          | 2               | 1,5    |  |
| 1425       | 3          | 3        | 3          | 3               | 3,0    |  |
| 1426       | na         | 2        | na         | 2               | 2,0    |  |
| 1427       | 3          | 3        | 1          | 1               | 2,0    |  |
| 1428       | 3          | 3        | 3          | 3               | 3,0    |  |
| 1429       | 2          | 3        | 2          | 1               | 2,0    |  |
| 1430       | 3          | 3        | 3          | 3               | 3,0    |  |
| 1431       | 3          | 3        | 2          | 2               | 2,5    |  |
| 1432       | 3          | 3        | 2          | 2               | 2,5    |  |
| 1433       | 1          | 1        | 3          | 3               | 2,0    |  |
| 1434       | 3          | 2        | 2          | 1               | 2,0    |  |
| 1435       | 1          | 2        | 3          | 3               | 2,3    |  |

### 8.6 APPENDIX 6: CALCULATION OF OVERALL PROFICIENCY SCORE

#### 8.7 APPENDIX 7: DEVIATION IN DATA HANDLING

| Group 1: Deviation in data handling |                                                                                                         |  |  |  |
|-------------------------------------|---------------------------------------------------------------------------------------------------------|--|--|--|
| Lab                                 | Reason for deviations in data handeling                                                                 |  |  |  |
| 1405                                | This lab commented on the the R1 response of PBMC 2010113367, for which they get no significant         |  |  |  |
|                                     | spots. This lab comment that in all previous participations they have seen many spots with this         |  |  |  |
|                                     | combination. They have no explanation for the discrepancy. We have considered this a result of          |  |  |  |
|                                     | experimental error and taken this dataset out of the calculation.                                       |  |  |  |
| 1411                                | This lab observed a large amount of spots in the negative controls for PBMC 201113384 for which         |  |  |  |
|                                     | they have no explanation. We have chosen to consider this a result of experimental error.               |  |  |  |
|                                     | To be able to include the lab in the overall score, the negative control for this dataset is set to the |  |  |  |
|                                     | average of the negative controls of all participants. Negaitve control (R3) is set to 3 spots in the    |  |  |  |
|                                     | calculations.                                                                                           |  |  |  |
| 1423                                | This lab comment that they reject the data in well E3 on PBMC 2010113384. We have calculated the        |  |  |  |
|                                     | average of the remaining two wells.                                                                     |  |  |  |
| 1426                                | This lab has used the CEFX Ultra SuperStim Pool (R2) in both sets of stimulation. The R1 (PepMixTM      |  |  |  |
|                                     | HCMVA (pp65)) of both PBMC sampels is taken out of the analysis (na)                                    |  |  |  |

| Group 2: Deviation in data handling |                                                                                                                                    |  |  |  |  |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Lab                                 | Reason for deviation in data handeling                                                                                             |  |  |  |  |
| 1421                                | This lap has used another peptide pool for stimulation (R1) on both samples. These data are taken out of the calculations.         |  |  |  |  |
| 1436                                | This lab is removed due to reported low cell viability, cell clumping, and no significant spot forming units in any of the assays. |  |  |  |  |



# 8.8 Appendix 8: Pre-testing by flow cytometry at Immudex of donor samples stained with MHC-Dextramer®

| Data<br>analysis<br>no. | PBMC       | Reagent                                  | Pre-test result       |  |
|-------------------------|------------|------------------------------------------|-----------------------|--|
| 1                       | 2010113367 | Reagent 1: PepMixTM HCMVA (pp65) and     | Madium response       |  |
|                         | 2010113367 | Reagent 3: Negative Control              | Medium response       |  |
| 2                       | 2010113367 | Reagent 2: CEFX Ultra SuperStim Pool and | Very low response     |  |
| 2                       |            | Reagent 3 (Negative Control)             | very low response     |  |
| 3                       | 2010113384 | Reagent 1: PepMixTM HCMVA (pp65) and     | Medium/high response  |  |
| 3                       |            | Reagent 3: Negative Control              | Mediant/high response |  |
| 4                       | 2010113384 | Reagent 2: CEFX Ultra SuperStim Pool and | Medium/high response  |  |
| -                       | 2010115504 | Reagent 3 (Negative Control)             | Medium might response |  |

#### 8.9 CHANGE LOG

For analysis 1, 3 and 4 we have changed the calculation of relative accuracy. In the previous report (version 2) we evaluated lab performance relative to the mean of all measurements. However, since the data are not normal distributed it is more correct to calculate the accuracy relative to the median of all measurements. We have redone the analysis accordingly which has impacted figures 1B, 6B, 7B, 8, 9 and 10, and appendix 4 (analysis 1, 3, 4), appendix 5, 6.

Table 1 has been changed slightly to make it easier to understand.

Appendix 2 – table for PMBC2010113367 with reagent 1 & 3, minor correction for lab 1426 (see appendix 7).

Appendix 3: minor correction for lab 1421 & 1426 (see appendix 7)