TCR Discovery and Detection of Antigen-Presentation on Cells using the Dextramer[®] Technology

Lyn Zhu, Kevin Lenogue, Thomas Holberg Blicher, Liselotte Brix

Immudex ApS, Virum, Denmark

Introduction

To successfully develop and apply T cell-based immunotherapies, the specificity and sensitivity of the selected TCR must first be validated before proceeding to clinical development. Here, the detection and quantification of antigen-presenting cells (APC) is important for 1) stratification and selection of patients with demonstrated expression of the target antigen, 2) confirming tissue-specific expression of the target antigen, and 3) monitoring target expression during treatment. To supports such efforts, we have developed high avidity TCR Dextramer[®] reagents to allow detection of peptide presentation by APCs. This study presents a complete workflow for TCR discovery, followed by the generation and use of TCR Dextramer[®] as a potential analytical tool for evaluating target expression on the cell surface of APCs.

Identify Candidate TCR Sequences using dCODE Dextramer®

Soluble TCR Monomers are produced in *E. coli*, refolded, biotinylated, and purified with an optimized platform. Rigorously QC'ed Soluble TCR Monomers are attached to a fluorescent Dextramer[®] backbone. Antigen-presenting cells (APC) can be stained with TCR Dextramer[®] reagents like conventional pMHC Dextramer[®] reagents on T cells.

Fig. 1. Using dCODE Dextramer[®] Technology to identify candidate TCR sequences (with Gene Expression and Surface Markers). A smooth workflow from dCODE Dextramer[®] reagents via single-cell transcriptomics (10x Chromium/BD Rhapsody) to specificity-validated TCR molecules.

Fig. 2. Quality control of TCR Dextramer[®]. TCR functionality and specificity for the target pMHC is confirmed in an artificial cell system by flow cytometry.

		Generated TCR	Dextramer®				
TCRs from Conventional T cells					TCRs from Non-conventional T cells		
	TCR specificity			11	TCR ID –	TCR specificity	
TCR ID	Allele	Antigen peptide	K _d			Allele	Antigen

А	HLA-A*02:01	SLLMWITQV	48 pM
В	HLA-A*02:01	SLLMWITQV	32 µM

© Copyright Immudex ApS, Denmark, 2024. All rights reserved.

Fig. 3. Recombinant TCRs from conventional T cells with different affinities, binds specifically to their targets.

TCR-A and **TCR-B** were evaluated in a bead-based assay for binding to their target. Both TCRs, bind efficiently to HLA-A*02:01/SLLMWITQV conjugated beads (Purple and Pink peaks), but not to control peptide ALIAPVHAV (gray pic) and not to unrelated HLA-E*01:03/RLPAKAPLL (Cyan pic).

